Complete Integrability of Shock Clustering and Burgers Turbulence
نویسنده
چکیده
We consider scalar conservation laws with convex flux and random initial data. The Hopf–Lax formula induces a deterministic evolution of the law of the initial data. In a recent article, we derived a kinetic theory and Lax equations to describe the evolution of the law under the assumption that the initial datum is a spectrally negative Markov process. Here we show that: (i) the Lax equations are Hamiltonian and describe a principle of least action on the Markov group; (ii) the Lax equations are completely integrable and linearized via a loop-group factorization of operators; (iii) the associated zero-curvature equations can be solved via inverse scattering. Our results are rigorous for N -dimensional approximations of the Lax equations, and yield formulas for the limit N → ∞. The main observation is that the Lax equations and zero-curvature equations are a Markovian analog of known integrable systems (geodesic flow on Lie groups and the N -wave model respectively). This allows us to introduce a variety of methods from the theory of integrable systems.
منابع مشابه
Kinetic theory and Lax equations for shock clustering and Burgers turbulence
We study shock statistics in the scalar conservation law ∂tu+∂xf(u) = 0, x ∈ R, t > 0, with a convex flux f and random initial data. We show that a large class of random initial data (Markov processes with downward jumps and derivatives of Lévy processes with downward jumps) is preserved by the entropy solution to the conservation law and we derive kinetic equations that describe the evolution ...
متن کاملA kinetic theory of shock clustering in scalar conservation laws
We describe a kinetic theory for shock clustering in scalar conservation laws with random initial data. Our main discovery is that for a natural class of random data the shock clustering is described by a completely integrable Hamiltonian system. Thus, the problem is in a precise sense exactly solvable. Our results have implications in other areas: mathematical physics (limits of shell models o...
متن کاملPeriodic Wave Shock solutions of Burgers equations
In this paper we investigate the exact peroidic wave shock solutions of the Burgers equations. Our purpose is to describe the asymptotic behavior of the solution in the cauchy problem for viscid equation with small parametr ε and to discuss in particular the case of periodic wave shock. We show that the solution of this problem approaches the shock type solution for the cauchy problem of the in...
متن کاملUniversality classes in Burgers turbulence
We establish necessary and sufficient conditions for the shock statistics to approach self-similar form in Burgers turbulence with Lévy process initial data. The proof relies upon an elegant closure theorem of Bertoin and Carraro and Duchon that reduces the study of shock statistics to Smoluchowski’s coagulation equation with additive kernel, and upon our previous characterization of the domain...
متن کاملNumerical solution of non-planar Burgers equation by Haar wavelet method
In this paper, an efficient numerical scheme based on uniform Haar wavelets is used to solve the non-planar Burgers equation. The quasilinearization technique is used to conveniently handle the nonlinear terms in the non-planar Burgers equation. The basic idea of Haar wavelet collocation method is to convert the partial differential equation into a system of algebraic equations that involves a ...
متن کامل